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mMobile Phone sensing is the next BIG Thing in the next years! [1]

m\We come to an exciting point in the development of people-centric
sensing applications.

mPower of human motes (Human + Smartphone) can be used to answer
lots of interesting questions and to build collaborative social network
applications.

mDespite these ubiquitous vision, there is no infrastructure to task/utilize
these devices for collaboration and coordination.
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[1] Mobile Phone Sensing is the Next Big Thing!, Andrew T. Campbell, ACM MobiOpp 2010 keynote, Feb 2010, Pisa,
Italy.
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Approach

m We focused on designing location based collaborative crowd-
sourced sensing system for solving real life problems with wisdom-of-
crowds affect.

m We propose that Twitter can provide an “open” publish-subscribe
Infrastructure for sensors and smartphones and pave the way for
ubiquitous crowd-sourced sensing and collaboration applications.
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Architecture

m AskWeet: A server side application that pushes questions to Sensweets (based on their
locations) and collects answers for Query owners (Twitter Clients). -
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_
m Sensweet: A smart-phone client or Sensor gateway device to publish sensed data
including location information to Twitter.
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Applications

m\Veather Radar: Creating very fine granularity weather condition maps of cities.

mQuery owner ask weather condition for specific location, Queries are handled with
Askweet and forwarded to sensweet clients (Twitter users with smartphone).

mEach answer from sensweet clients include longitude and latitude information with
weather condition status.
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Weather Radar
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Fig. 2. State transition diagram for Askweet component
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Experimental Results for Weather Radar
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Fig. 3. Experimental results for NYC in different time slices
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Fig 4. Experimental results for 3 cities

»Covers 1 week period and 3 cities
»Even without an incentive structure, we have around 15% reply rates
»Latency are low (40-50% replies arrive in 30 minutes and 60-80% replies arrive in 2 hours).
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Applications

m Noise Map: Constructing the noise map of a city by aggregating readings from city
habitants (human motes). The noise maps can be used to improve living conditions in
urban life.

Different noise levels
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Noise Map
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mOnce query is pushed, the most recent

Fig 7. State transition diagram for Sensweet client noise sample reading value of closest
sensweet client is returned (with its
location and timestamp).

mSensweet component is implemented for Nokia 97 and publishes Noise sensor readings in
three different levels [Low, Medium, High] with location information.
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mSensWeet client record 1 second noise sample via Nokia N97 Microphone (in Wav File).

mTemporary WAV file is parsed and each sample is represented by average amplitude of
signals.

mAfter that probability density value function value (Normal Distribution Format) of average
amplitude is calculated for each class {Low, Medium, High}

pdf (z) = 4 ex )(_____(a: _ 'u')‘z)
T 2mo? i 20°

mANd current sample is assigned to Noise Level with highest PDF value.
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Experimental Results for Noise Map
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Fig 5. Normal distributions for different noise levels
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Fig. 6. Representative samples for different noise levels

We train normal distribution of 3 noise level classes in different locations

*At least 2 locations are used for each class and At least 200 samples are used in each Location.
+(Silent lab, Silent home) -> Low Noise

*(Lab Meetings, Student Union) -> Medium Level

*(Loudly Music at Home, DownTown Bars) -> High Level
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Related Work

Participatory Sensing [11] and People Centric Sensing [12] projects propose frameworks for
collecting data from privately held smart phones. However these projects does not include
how to coordinate and collaborate smartphones to solve real time Question&Answering or
Crowd-Sourced Sensing problems.

Recent Similar work to our project is MicroBlog project [13] that includes design and
iImplementation of location based question & answering for real time sensing. However this
work does not utilize social networking web sites for user participation. It's closed system and
needs user registration, they don’t focus on crowd-sourced sensing.

[11] Burke, Jeff, Estrin, Deborah, Hansen, Mark H., Parker, Andrew, Ramanathan, Nithya, Reddy, Sasank, and Srivastava,
Mani B. Participatory sensing. In ACM Sensys World Sensor Web Workshop (2006).

[12] Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Ronald A. Peterson,Hong Lu, Mirco Musolesi, Shane. B. Eisenman,
Xiao Zheng, Andrew T. Campbell, "Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of
the CenceMe Application”, In Proc. of 6th ACM Conference on Embedded Networked Sensor Systems (SenSys '08), Rale
igh, NC, USA, Nov. 5-7, 2008.

[13] Gaonkar, Shravan, Li, Jack, Choudhury, Romit Roy, Cox, Landon, and Schmidt, Al. Micro-blog: sharing and querying
content through mobile phones and social participation. In MobiSys (2008), pp. 174-186.

Murat Ali Bayir, May 10 té !.!uluul_t; at uqﬂal?
12 The State University of New York



Conclusion

mOur experiments with crowd-sourcing on Twitter are promising, For weather
Radar:

»Even without an incentive structure, we have around 15% reply rates

»Latency are low (40-50% replies arrive in 30 minutes and 60-80% replies
arrive in 2 hours).

»Another promising finding is that a majority of replies were tweeted from
smartphones.

m\With Noise Map:

»We showed that it is feasible to use sensor capacity of smartphones for
location based crowd-sourced sensing applications.
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Future Directions

mFuture Directions:

»Use of Mobility Profiles for client availability and continuous query assignment

»Queries to the sparse regions can be improved by using location prediction. These
gueries not only routed users physically at that location (during query), but also
forwarded to users that are more likely visit query location in near future.

»Continuous queries can be assigned to specific clients by considering their mobility

profiles. .
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Conclusion

End of
Presentation
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